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Abstract 
 
One of the most fundamental, critical environmental issues confronting mankind into the 
foreseeable future remains the ominous spectre of climate change, in particular the pace 
at which impacts will occur and our capacity to adapt. Sea level rise is one of the key 
artefacts of climate change that will have profound impacts on global coastal 
populations. It is estimated that some 600 million people live within the Low Elevation 
Coastal Zone (contiguous areas along the coastlines of the world less than 10m above 
Mean Sea Level) and considered vulnerable to storm surges and projected sea level 
rise.  
 
Although extensive research has been undertaken into sea level rise, there remains 
considerable conjecture and scientific debate about the temporal changes in MSL and 
the climatic and associated physical forcings responsible for them. The improvement of 
analytical techniques to isolate MSL (or trend) from the contamination of the decadal and 
inter-decadal (and longer) cyclical influences and noise remains the overwhelming aim 
of researchers in the sea level rise field.  
 
In effect, comparison from one estimate of MSL to another, in part has become an 
indirect qualitative view of the merit of the analytical approach applied. An innovative and 
transparent process by which to identify the most appropriate analytical technique for 
isolating the MSL signal is to test such approaches against “synthetic” (or custom built) 
data sets with a known MSL signal. 
 
Testing of contemporary analytics against a “synthetic”, physics based data set will 
substantially improve the rigour and confidence around current estimates of MSL and its 
temporal characteristics to better inform projection modelling endeavours and improve 
public education around the issue of sea level rise. 
 
This paper provides a summary of the process associated with the development of the 
core synthetic data set used for testing purposes proposed as part of a post graduate 
research program. A more detailed discussion will be published in an upcoming issue of 
the Journal of Coastal Research. 
 
 
Introduction 
 
One of the most fundamental, critical environmental issues confronting mankind into the 
foreseeable future remains the ominous spectre of climate change, in particular the pace 
at which impacts will occur and our capacity to adapt (Watson, in press). Sea level rise is 
one of the key artefacts of climate change that will have profound impacts on global 
coastal populations. Although higher sea level only directly impacts coastal areas, these 
are the most densely populated and economically active land areas on Earth 
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(McGranaghan, Balk, and Anderson, 2007; Nicholls, 2011; Sachs, Mellinger, and Gallup, 
2001).  
 
It is estimated that some 600 million people live within the Low Elevation Coastal Zone 
(contiguous areas along the coastlines of the world less than 10m above mean sea 
level) and considered vulnerable to storm surges and projected sea level rise. This 
threatened population is growing significantly (McGranaghan, Balk, and Anderson, 2007) 
and it will almost certainly increase in the coming decades, especially if the strong 
tendency for coastal migration continues (Nicholls, 2011). 
 
Watson (in press) advises that although extensive research has been undertaken into 
sea level rise, there remains considerable conjecture and scientific debate about the 
temporal changes in mean sea level and the climatic and associated physical forcings 
responsible for them. In particular, significant debate has centred around the issue of a 
measurable acceleration in ocean water level records (see Baart, Van Koningsveld, and 
Stive, 2012; Donoghue and Parkinson, 2011; Houston and Dean, 2011a,b; Rahmstorf 
and Vermeer, 2011; Rhein et al., 2013; Watson, 2011), a feature central to projections 
based on the current knowledge of climate science (IPCC, 2013).  
 
The complexity of the broad range of physical influences embedded within monthly and 
annual average ocean water level data sets used for sea level research deems that such 
records are not able to be definitively deconstructed or parametrically modelled to 
precisely estimate mean sea level at a given point in time or location. Inevitably, the 
corroboration of a range of alternative techniques is relied upon to converge on an 
estimate of mean sea level and associated trends, velocities and accelerations. With so 
much critical reliance on accurate estimates of these physical parameters to understand 
climate change and improve future projections, there is increased urgency in identifying 
the better performing analytics for defining the temporal characteristics of mean sea 
level. 
 
The improvement of analytical techniques to isolate mean sea level (or trend) from the 
contamination of inter-annual to inter-decadal (and longer) cyclical influences and noise, 
remains the overwhelming aim of researchers in the sea level rise field. The complexity 
of the dynamic influences and noise embedded within ocean water level data sets has 
led sea level research toward successively more sophisticated time series analytical 
techniques to improve estimates of the trend. In particular over recent decades, the 
emergence and rapid improvement of data adaptive approaches to isolate trends from 
nonlinear, non-stationary and comparatively noisy environmental data sets such as 
Empirical Mode Decomposition (Huang et al., 1998; Wu and Huang, 2009), Singular 
Spectrum Analysis (Broomhead and King, 1986; Golyandina, Nekrutkin, and Zhigljavsky, 
2001; Vautard and Ghil, 1989) and Wavelet analysis (Daubechies, 1992; Grossmann 
and Morlet, 1984; Grossmann, Kronland-Martinet, and Morlet, 1989) are theoretically 
encouraging. 
 
In the absence of an absolute knowledge of the mean sea level signal (or trend) for a 
particular record, the accuracy of the trend has increasingly been inferred from the 
assumed sophistication of the underpinning analytical approach. An innovative and 
transparent process by which to identify the most efficient analytical technique for 
isolating the mean sea level signal is to test such approaches against “synthetic” (or 
custom built) data sets with a known mean sea level signal.  
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From the extensive literature available and through consultation with some of the world’s 
leading oceanographers, sea level researchers and subject matter experts (refer 
Acknowledgements section), ocean water level records can be considered to be a 
complex composite of a mean sea level signal and a range of key dynamic components. 
These dynamic components include: seasonal influences, pole tide, cyclical longer-term 
tidal harmonics (e.g., nodal tide), climate mode influences; and random environmental 
noise. For a detailed discussion on these components refer Watson (in press). 
 

Methods 
 
This section summarises the methodology applied to the development of the synthetic 
data set, in particular, the construction of each of the core elements within the data set. 
 
Overview 
 
In order to be effective, the synthetic data set developed for this research has been 
specifically designed to mimic the key physical characteristics embedded within real-
world ocean water level data. Hence, the synthetic data set comprises a range of known 
dynamic components added to a nonlinear, non-stationary time series of mean sea level.  
 
A schematic representation of the elements comprising the core synthetic data set is 
depicted at Figure 1. This data set has been designed as a monthly average time series 
spanning a 160 year period from 1850 – 2010. This time period has been selected to 
reflect the predominant date range for the longer Permanent Service for Mean Sea Level 
(PSMSL) data holdings.  
 
 

 
 

Figure 1: Schematic representation of core synthetic data set. 
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The core synthetic data set has been designed to be as generically applicable as 
possible (i.e., reflective of the environmental attributes and signals captured by a tide 
gauge located anywhere worldwide). In order to do this, each of the key dynamic 
influences are represented by a bin of monthly time series spanning the full 160 year 
period, reflecting the range of real-world measured influences for each particular 
component. The synthetic data set contains 20,000 separate time series, with each time 
series generated by successively adding a randomly sampled signal from within each of 
the dynamic components to the fixed mean sea level signal.  
 
The selection of 20,000 randomly generated time series represents a reasonable 
balance between optimising the widest possible set of complex combinations of real-
world signals and the extensive computing time required to analyse the synthetic data 
set. Further, the 20,000 generated trend outputs from each analysis applied to the data 
set provides a robust means of statistically identifying the better performing techniques 
for extracting the trend. 
 
In addition to the published literature, the data from 43 selected PSMSL sites have been 
analysed and decomposed to estimate genuine seasonal signals and noise components 
using the respective methods detailed below pertaining to these components. The 
selected sites (Figure 2) were based on maximising a range of factors including global 
spatial coverage, length and quality of records and range of environmental influencing 
factors. The other dynamic components and the fixed mean sea level signal have been 
specifically based on the scientific literature and the methods used to generate the bins 
of real-world signals are detailed in the following sections dedicated to each component. 
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KEY:    
1. Honolulu (USA) 2. Yakutat (Canada) 3. Seattle (USA) 4. San Francisco (USA) 
5. Churchill (Canada) 6. Trois-Rivieres (Canada) 7. New York (USA) 8. Baltimore (USA) 
9. Bermuda (Bermuda) 10. Key West (USA) 11. Magueyes Island (Puerto Rico) 12. Balboa (Republic of Panama) 
13. Belem (South America) 14. Antofagasta (South America) 15. Buenos Aries (South America) 16. Argentine Islands (Antarctica) 
17. Mossel Bay (South Africa) 18. Arrecife (Canary Islands, Spain) 19. Brest (France) 20. Newlyn (UK) 
21. Lerwick (UK) 22. Cuxhaven (Germany) 23. Swinoujscie (Poland) 24. Helsinki (Finland) 
25. Murmansk (Russia) 26. Poti (Georgia) 27. Alexandria (Egypt) 28. Mumbai (India) 
29. Cochin (India) 30. Chennai (India) 31. Visakhapatnam (India) 32. Diamond Harbour (India) 
33. Dalian (China) 34. Macau (Macau) 35. Hondau (Vietnam) 36. Ko Taphao Noi (Thailand) 
37. Jolo (Philippines) 38. Sembawang (Singapore) 39. Fremantle (Australia) 40. Fort Denison (Australia) 
41. Auckland (New Zealand) 42. Petropavlovsk (Russia) 43. Kotelnyi (Russia)  

 
Figure 2: Location of PSMSL stations used to derive seasonal components. 

Co-ordinate system is degrees latitude and longitude. 
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Mean Sea Level 
 
Within the synthetic data set, the mean sea level has been developed as a smoothed, 
non-linear time series signal. This has been achieved by applying a broad cubic 
smoothing spline to a range of points over the 1950-2010 time horizon reflective of the 
general characteristics of the global trend of mean sea level (Bindoff et al., 2007; Church 
et al., 2013) accentuating the key positive and negative “inflexion” points evident in the 
majority of long ocean water level data sets (Woodworth et al., 2009). The cubic 
smoothing spline has been used to predict the mean sea level time series for each 
respective month over the designated time span. It is noteworthy that the error margins 
on the global mean sea level reconstructions broaden significantly moving back in time 
owing to the quality and quantity of available records prior to 1900. Therefore, the 
portion of the mean sea level time series prior to 1880 has been generally assumed. 
This monthly time series signal (Figure 3) is the key fixed signal embedded within each 
of the 20,000 generated time series of the core synthetic data set. 
 

 
 

Figure 3. Generated monthly time series signal of mean sea level (MSL). 
 
 
Seasonal Influences 
 
In order to build the seasonal component bin for the synthetic data set, the selected 
gauge sites (Figure 2) have been decomposed to isolate the seasonal signal. These 
records provide a broad mixture of seasonal signatures, involving locations which also 
encompass significant monsoonal and glaciological cycles. The seasonal signal has 
been extracted from each of the monthly average gauge records using three (3) 
separate established methodologies, including: 
 
Method 1 - locally weighted polynomial regression smoothing (or “LOESS”) of the 
seasonal sub-series (i.e., the series of all January, February, March values, etc.); 
 
Method 2 - spectral analysis using a de-seasonalising band stop filter available in the 
IDEOLOG software package (Pollock, 2008); and 
 
Method 3 - fitting an autoregressive integrated moving average (or ARIMA) model to the 
data. This approach has been undertaken using the X-12-ARIMA seasonal adjustment 
software package developed by the US Census Bureau (US Census Bureau, 2009). 
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Long Period Tidal Harmonic Influences 
 
The 18.61 year nodal cycle is the key tidal harmonic influence of relevance to the 
synthetic data set. The literature is replete with equilibrium theory and measured 
amplitudes and phase angles of signals at the nodal frequency from tide gauge records 
and satellite altimetry. Sinusoidal curves with a period of 18.61 years covering the range 
of nodal amplitudes and phase angles described in the literature, have been used to 
develop the bin of time series representing nodal tide signals. 
 
Pole Tide Influence 
 
Although the pole tide has separate annual and 433 day (Chandler “wobble”) 
components, the amplitude of the annual pole tide harmonic (less than ≈ 5 mm) is 
relatively small compared to that of the seasonal signal at the same frequency, and thus 
has not been considered further for addition to the synthetic data set. However, in order 
to represent the component of the pole tide at the Chandler frequency, sinusoidal curves 
with a period of 433 days have been developed with time varying amplitudes.  
 
The maximum amplitude of 18 mm in early 1993 determined by Desai (2002) from 
satellite altimetry data, has been fitted to the time varying time series of polar motions 
determined by Malkin and Miller (2010) spanning the period from 1850 to 2010. This 
maximum amplitude time varying signal has been factored to generate time varying 
sinusoids with a period of 433 days covering the phase and amplitude range of 
measured pole tide signals discussed in the literature. A small number of time series 
have also been generated to reflect the anomalously high amplitude signals at this 
frequency that have been measured in the North Sea region (up to 40 mm). 
 
Climate Mode Influences 
 
The significant work of Trenberth et al. (2007) confirm that of the many identified climate 
patterns, the majority of inter-annual variability in circulation and surface climate can be 
described by four key patterns (namely SAM, NAM, ENSO and PDO). From the 
numerous studies correlating climate mode influences to sea level anomalies, there is 
also strong evidence of in particular, the dominant global ENSO signal superimposed on 
strong localised patterns of climate variability on shorter monthly, seasonal and inter-
annual timescales of influence (such as SAM, NAM/NAO).  
 
ENSO is the dominant, global signal with power in the inter-annual to decadal frequency 
band, with varying localised influence (Trenberth et al., 2007). Although closely 
correlated to ENSO with key influence in the north and western pacific region, the PDO 
has also been shown to have a global influence on mean sea level at bi-decadal and 
longer frequencies (Hamlington et al., 2013). In order to encompass the widest possible 
range of climate mode influences likely to be embedded within ocean water level data 
sets, the “global” climate mode influence has been constructed as a composite of signals 
reflective of both ENSO and PDO signatures added to a “regional” influence such as 
SAM and NAM (schematically indicated in Figure 4). The mechanics of how the 
respective bins of signals have been constructed are detailed in Watson (in press). 
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Figure 4. Schematic representation of climate mode component. 
 
 
Noise 
 
The 43 PSMSL gauge sites used for seasonal decomposition (refer Figure 2) have 
similarly been used to estimate the likely range of white noise attributes within 
conventional monthly averaged ocean water level data sets. The process applied to 
extract the white noise component is relatively straightforward, involving 3 key steps: 
 
Step 1 - isolate and remove seasonal influences using “stl decomposition” function in the 
R analytical software package (R Core Team, 2014)(refer Method 1, Seasonal 
Influences section); 
 
Step 2 - fit generalised least squares (GLS) linear regression model to “de-seasonalised” 
time series data to extract residuals; and  
 
Step 3 - fit autoregressive (AR) model to the residuals from the fitted GLS regression 
model to remove the serial correlation. Analysis of the correlogram of the Partial 
Autocorrelation Function (PACF) has been used to determine the optimum lagged AR 
model to remove serial correlation from the residuals. 
 
Only 5 sites (Arrecife, Canary Islands; Churchill, Canada; Jolo, Philippines; Mossel Bay, 
South Africa; Visakhapatnam, India) proved unsuitable for this process, largely due to 
either significance of gaps in the available data record or significance of the deviation 
from linear of the assumed underlying trend. From this analysis, the standard deviation 
of the monthly residuals ranged from a low of 23 mm (Magueyes Island, Puerto Rico) to 
a high of 290 mm (Trois-Rivières, Canada), the latter affected by significant fluctuations 
from year to year in glaciological discharges directed through the Saint Lawrence River 
system. The next highest standard deviations recorded were 144 mm (Helsinki, Finland) 
and 143 mm (Cuxhaven, Germany). 
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Results 
 
This section provides a brief summary of the key dynamic cyclical components (Figure 
1) used to generate the 20,000 time series comprising the synthetic data set.  
 
The seasonal signals extracted via Methods 1 and 2 produced near identical results for 
the respective monthly amplitude at each station. To avoid unnecessary duplication of 
results, only the Method 1 and Method 3 outputs have been used to compose the 
seasonal time series components in the synthetic data set. From the analysis, the phase 
and amplitude of the seasonal signals varied significantly ranging from the smallest 
amplitude signal (-24 to +3 mm) recorded at Argentine Islands (Antarctica) to the largest 
amplitude signal (-630 to +1220 mm) recorded at Trois-Rivières (Quebec, Canada) 
situated at the confluence of the Saint-Maurice and Saint Lawrence Rivers and 
significantly affected by glaciological cycles. Based upon this analysis, the seasonal 
component of the synthetic data set consists of a bin of 82 separate time series 
representing a wide range of repetitive and time varying seasonal signals expected 
within ocean water level data sets. 

 
There is a considerable body of literature dedicated to both the equilibrium theory of the 
nodal tide and associated measurements from both tidal records and satellite altimetry. 
In consideration of the extensive literature, the component of the synthetic data set 
representative of the lunar nodal tide signal has been randomly sampled from a bin of 
sinusoidal curves with an 18.61 year period, with amplitudes ranging from zero to 30 mm 
(in 0.5 mm increments) and phase angles ranging from zero to 180˚ (in 10˚ increments). 
In total, 1141 time series (including a zero time series) have been generated to 
represent the range of nodal tide influences expected within ocean water level data sets. 

 
A peak amplitude time series signal has been used as the basis for developing time 
varying amplitude sinusoids with a period of 433 days to represent signals reflective of 
the pole tide influence in the synthetic data set. To accommodate the range of 
amplitudes of this signal that can vary from zero to the peak, the maximum time varying 
amplitude time series has been factored from zero to unity in 50 equal increments. 
These sinusoids have been determined both for phase angles of zero and 180˚ to 
represent the diurnal characteristics of the signal. In order to represent the larger 
amplitude pole tide signals experienced in the North Sea region, 5 additional time series 
have been generated with factors corresponding to maximum time varying amplitudes of 
24, 28, 32, 36 and 40 mm with zero phase. In total, the pole tide component is 
represented by a bin of 106 time varying sinusoids. 

 
Some of the most dynamic influences on ocean water levels are directly attributable to 
large scale modes of climate variability which are described commonly by patterns which 
cover a broad range of climatological variables on particular spatial and temporal scales. 
Although many teleconnections and patterns have been identified, much of the inter-
annual variability in the circulation and surface climate can be related to a small number 
of patterns related to the SAM, NAM, ENSO and PDO (Trenberth et al., 2007). 
 
The global climate mode influence within the synthetic data set has been based on 
fitting maximum measured amplitude signals to ENSO and PDO indices based on global 
characteristics of sea surface anomalies measured during the altimetry period (Zhang 
and Church, 2012). In each case, portions of the respective indices were recycled to pad 
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the record over the full length of the synthetic data set. In total, the global climate mode 
influence component is represented by a bin of 160 complex time series signals. 
 
The regional climate mode influence within the synthetic data set has been based on 
fitting maximum measured amplitude signals to SAM and NAO indices based on 
regional characteristics of sea surface anomalies measured by Aoki (2002) around 
Antarctica and by Woolf, Shaw and Tsimplis (2003) from altimetry data around the North 
Sea, the Mediterranean and eastern parts of the North Atlantic, respectively. As with the 
global climate mode indices used, portions of the respective SAM and NAO indices were 
recycled to pad the record over the full length of the synthetic data set. In total, the 
regional climate mode influence component is represented by a bin of 127 complex time 
series signals. 
 
From the analysis to isolate the white noise residuals from the 43 PSMSL guage sites 
(refer Figure 2), the standard deviation of the monthly white noise residuals ranged from 
a low of 23 mm (Magueyes Island, Puerto Rico) to a high of 290 mm (Trois-Rivières, 
Canada), the latter affected by significant fluctuations from year to year in glaciological 
discharges directed through the Saint Lawrence River system. The next highest 
standard deviations recorded were 144 mm (Helsinki, Finland) and 143 mm (Cuxhaven, 
Germany). In order to generate a white noise component reflective of real-world 
attributes, a Gaussian (normal) distributed set of residuals of length 1920 months has 
been randomly sampled for each time series in the synthetic data set. The scale of each 
set of normally distributed white noise residuals has been determined by randomly 
sampling from a bin of standard deviations ranging from 20 to 300 mm (stepped in 
increments of 1 mm to 150 mm, then 50 mm thereafter; 134 standard deviations in total) 
to reflect the results from analysis of the gauge records sampled. 

 
Conclusion 
 
Ocean water levels are a complex mix of numerous cyclical dynamic influences on 
differing physical, spatial and temporal scales, superimposed on a comparatively low 
amplitude signal of mean sea level rise over time. Numerous time series analysis 
techniques are available for estimating the trend component from the contamination of 
the many cyclical dynamic influences and noise. All have inherent strengths and 
weaknesses and differing capacity in resolving the range, scale and frequency of signals 
commonly embedded within ocean water level data sets used to estimate mean sea 
level.  
 
The synthetic data set described in this paper is based on complex randomly sampled 
signals that mirror real-world attributes of key dynamic components embedded within 
ocean water level data, added to a fixed, non-stationary, nonlinear signal of mean sea 
level. This data set comprising 20,000 unique monthly average time-series, provides a 
robust tool to test analytics for their utility to isolate the known mean sea level signal (or 
trend) with improved temporal resolution. Similarly, this monthly data set can be 
subdivided into shorter sections and annualised to investigate additional issues 
associated with record lengths and annual versus monthly records. 
 
By identifying the better performing class of analytics for estimating trends from ocean 
water level data sets, we can gain improved insight into key temporal signatures in these 
records that in turn can better inform the calibration of AOGCMs at finer scale (regional). 
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Similarly, by identifying the mean sea level trend with improved temporal accuracy, one 
can be more confident that key change points evident in the mean sea level record will 
be genuinely identified rather than an artefact of inherent limitations imposed by various 
analytical approaches. With so much debate and perceived uncertainty surrounding the 
interpretation of mean sea level signals over recent years, this innovative and 
transparent process will provide a significant step forward that will improve sea level 
research and its understanding. 
 
For a more detailed discussion on the development of the synthetic data set readers are 
referred to Watson (in press). Analysis is now well advanced testing a broad range of 
time series analytics against the synthetic data set for their utility to isolate the mean sea 
level (trend) component. The results of this work will be detailed in a forthcoming paper 
and will form the basis of the development of an analytical package designed specifically 
for sea level researchers. 
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