Restoring Estuaries– Linking Planning, Science and On-ground Considerations

Will Glamore, PhD
Principal Research Fellow
Water Research Laboratory, SCEE
UNSW Australia
Restore/Recreate/Rehab/Remediate

>$100M/a spent with limited understanding of:

- Ecohydraulics
- Hydrology vs Vegetation Linkages
- Geomorphology and carbon cycles
- System values (what is important and why)
- Climate Change impact
- System Feedback Loops
<table>
<thead>
<tr>
<th>Existing State</th>
<th>Saltmarsh</th>
<th>Acid Sulphate Soils</th>
<th>Mangroves</th>
<th>Frogs</th>
<th>Freshwater Flora</th>
<th>Fish</th>
<th>Migratory Birds</th>
<th>Neighbours</th>
<th>Snipe/Grass Owl</th>
<th>Mosquitos</th>
<th>Catchment Impact</th>
<th>Buffer Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Good</td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>No Change</td>
<td></td>
</tr>
<tr>
<td>Bad</td>
<td></td>
</tr>
<tr>
<td>Very Bad</td>
<td></td>
</tr>
<tr>
<td>Scenario</td>
<td>Saltmarsh</td>
<td>Acid Sulphate Soil</td>
<td>Mangroves</td>
<td>Frogs</td>
<td>Freshwater Flora</td>
<td>Fish</td>
<td>Migratory Birds</td>
<td>Neighbours</td>
<td>Snipe/Grass Owl</td>
<td>Mosquitos</td>
<td>Catchment Impact</td>
<td>Buffer Zone</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>--------------------</td>
<td>-----------</td>
<td>-------</td>
<td>------------------</td>
<td>------</td>
<td>----------------</td>
<td>------------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Very Good</td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>No Change</td>
<td></td>
</tr>
<tr>
<td>Bad</td>
<td></td>
</tr>
<tr>
<td>Very Bad</td>
<td></td>
</tr>
</tbody>
</table>
Saltmarsh Acid Sulphate Soils Mangroves Frogs Freshwater Flora Fish Migratory Birds Neighbours Snipe/Grass Owl Mosquitos Catchment Impact Buffer Zone

Very Good

Good

No Change

Bad

Very Bad
MANGROVE Scenario

<table>
<thead>
<tr>
<th></th>
<th>Saltmarsh</th>
<th>Acid SS</th>
<th>Mangroves</th>
<th>Frogs</th>
<th>Freshwater Flora</th>
<th>Fish</th>
<th>Migratory Birds</th>
<th>Neighbours</th>
<th>Snipe/Grass Owl</th>
<th>Mosquitos</th>
<th>Catchment Impact</th>
<th>Buffer Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Good</td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>No Change</td>
<td></td>
</tr>
<tr>
<td>Bad</td>
<td></td>
</tr>
<tr>
<td>Very Bad</td>
<td></td>
</tr>
</tbody>
</table>

- **Very Good**: Minimal impact or positive influence on the ecosystem.
- **Good**: Slight impact with some mitigation measures required.
- **No Change**: Impact remains consistent with current state.
- **Bad**: Significant negative impact requiring urgent action.
- **Very Bad**: Severe negative impact necessitating immediate intervention.

UNSW Water Research Laboratory
The Dream...

CLIMATE CHANGE Scenarios

- Saltmarsh
- Acid Sulphate Soils
- Mangroves
- Frogs
- Freshwater Flora
- Fish
- Migratory Birds
- Neighbours
- Snipe/Grass Owl
- Mosquitos
- Catchment Impact
- Buffer Zone

Very Good

Good

No Change

Bad

Very Bad

Rate of Change?

Boundary Influences?
Typical Wetland Projects

CONCEPTUAL UNDERSTANDING
Understanding existing site constraints and forcing functions (numerical modelling)

DESIGN/PLANNING
Applying conceptual design against site limitations and project restraints (floodgate design criteria)
Typical Wetland Projects

(c)
ON-GROUND WORKS
Implements project plan
(modified gate design)

(d)
MONITORING
BACI programme
(importance of mass flux and imaging techniques)
Concept Stage: Lessons

- Move beyond singular outcomes by understanding entire estuary.
- Plan within resilience timeframes.
- Objectively determine the highest priorities.
DRY Conditions

Dry Periods
- Saline dominant
- Limited acid discharge
- Limited upland inflow
- Highly buffered
Flood Conditions

Wet Periods
- Freshwater dominant
- Acid flow high, low concentration
- Limited tidal prism
- Highly diluted

Acid Water:
- Strong flow, low concentration

Restricted tidal prism
- Freshwater
- Tidal (salt) water
- Freshwater, high dilution
Draining Conditions (Acidic)

Acid Periods
- Acid water dominant
- Highly concentrated acid
- Limited upland inflow (low dilution)
- Limited tidal intrusion (low buffering)

Low dilution, low salt, high acid

Acid Water: Moderate flow, high concentration
Risk Based Priority Method

- **Drainage**: Long, deep, wide drainage network, Low lying land — High drain invert narrow, short, High topography.
- **Hydrology**: Large catchment — Small catchment.
- **Asset condition**: Poor condition — Good condition.
- **Groundwater**: High hydraulic conductivity — Low hydraulic conductivity.
- **Water quality**: Low pH <4 (history of acid) — Near neutral pH >6 (no acid history).
- **Sensitive receivers**: Nearby oysters — Far from.
- **Acidic soils**: Shallow acidic layer (above drain invert and MSL) — Deeper acid layer (below drain invert and low tide elevation).

UNSW Water Research Laboratory
Planning/Design Lessons

• Overseas methods largely not valid.

• On-ground engineering reduces initial risk but not a long-term solution.

• Pick winnable stages (but avoid zoos).
Case Study: Tomago Wetlands

Restoration of large coastal wetland for habitat offset project.

- Design
- Planning
- On-ground works
- Monitoring
Wetland Creation
On-ground Controls
On-ground Works Lessons

• Trial by error is no longer acceptable.

• Trial periods don’t work.
Remediation Options: Tidal Wetland Creation
Monitoring Lessons

- Concentration is only $\frac{1}{2}$ the story.
- Rehabilitation occurs in spurts.
- Link site results to impacts.
>200 mm of rainfall was recorded at the site in 3 days in late Jan 2013
Wet Conditions: Jan-Feb 2013
On-ground Impacts
Response to Restoration
Things to note...

- Lets not wait for a catastrophe, its already bad enough (death by 1000 cuts).
- Existing scientific method is flawed.
- CC impact is caused by rate of change.
Climate Change

• System dynamics are in balance.
• SLR Rate is not linear!
• When SLR exceeds deposition system failure occurs.
• Rate of change is key
But then...

- Scientific method has to be adjusted to integrate various rate changes...
- BACI to b-FAcI?
 - Where is the site headed towards?
 - Are there any controls?
Thanks...

- WRL Staff
- OEH’s Parks and Wildlife Division
- Councils (Shoalhaven, GTCC)
- Students (Lisa Granqvist)
- NSW DPI - Fisheries
- Habitat Action Grants
- Various LLS
- Commonwealth
- Plus many others...
But...

- Animation Link